Pulsed Nonlinear Acoustic Fields from Clinically Relevant Sources: Numerical Calculations and Experiments Results
نویسندگان
چکیده
The goal of this work was to verify experimentally the applicability of the recently developed Time-Averaged Wave Envelope (TAWE) method [1] as a tool for fast prediction of pulsed nonlinear pressure fields from focused nonaxisymmetric acoustic sources in attenuating media. The experiments were performed in water at the fundamental frequency of 2.8 MHz for spherically focused (focal length F = 80 mm) square (20 × 20 mm) and rectangular (10 × 25 mm) sources similar to those used in the design of 1D linear arrays operating with ultrasonic imaging systems. The experimental results obtained with 10-cycle tone bursts at three different excitation levels corresponding to linear, moderately nonlinear and highly nonlinear propagation conditions (0.045, 0.225 and 0.45 MPa on-source pressure amplitude, respectively) were compared with those yielded using the TAWE approach. Comparison of the experimental and numerical calculations results has shown that the TAWE approach is well suited to predict (to within ±1 dB) both the spatial-temporal and spatial-spectral pressure variations in the pulsed nonlinear acoustic beams.
منابع مشابه
Pulsed Focused Nonlinear Acoustic Fields from Clinically Relevant Therapeutic Sources in Layered Media: Experimental Data and Numerical Prediction Results
In many therapeutic applications of a pulsed focused ultrasound with various intensities the finiteamplitude acoustic waves propagate in water before penetrating into tissues and their local heating. Water is used as the matching, cooling and harmonics generating medium. In order to design ultrasonic probes for various therapeutic applications based on the local tissue heating induced in select...
متن کاملExtraction of Nonlinear Thermo-Electroelastic Equations for High Frequency Vibrations of Piezoelectric Resonators with Initial Static Biases
In this paper, the general case of an anisotropic thermo-electro elastic body subjected to static biasing fields is considered. The biasing fields may be introduced by heat flux, body forces, external surface tractions, and electric fields. By introducing proper thermodynamic functions and employing variational principle for a thermo-electro elastic body, the nonlinear constitutive relations an...
متن کاملAnalysis of Radial Baffle Effects on Acoustic Characteristics of a Combustion Chamber
An efficient finite volume approach has been used to develop a three dimensional Helmholtz acoustic solver for complex geometries. This acoustic solver was utilized to obtain characteristic mode shapes and frequencies of a baffled combustion chamber. An experimental setup, including stationary and moving sensors, has also been used to measure these quantities for the same model combustion chamb...
متن کاملFinite-element analysis of the nonlinear propagation of high-intensity acoustic waves
This paper deals with a three-dimensional numerical procedure based on the finite-element method for the modeling of finite-amplitude progressive acoustic waves. The method can predict the nonlinear propagation of acoustic fields produced by sources of arbitrary geometry. Based upon a perturbation method, a second-order analytical study is developed and the numerical procedure is formulated. Ba...
متن کاملEnergy Transfer and Connectivity in Chloroplasts: Competition between Trapping and Annihilation in Pulsed Fluorescence Induction Experiments
Despite the fact that fluorescence induction is a very complicated process, the technique is used to obtain information regarding connectivity in photosynthetic systems. The models generally used for the analysis are oversimplified, which in some cases has led to questionable interpretations. Here we describe the effects of nonlinear loss processes in (pulsed) induction experiments and how they...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009